GOGO I
SEGRETD

B ¥ n

SPFECTRUM PROJELCTS

COCO III SECRETS REVEALED is a filled with useful information
and powerful secrets that will help you utilize new features of your
Color Computer 1I11. It will present several unique routines and
show you some powerful features that were not available with the
Color computer or Color Computer II.

COCO I11 SECRETS REVEALED does not require any knowledqge of
machine language. It should be noted that this book was written to
explain the features of the new Coco II1 and since some of the new
features are of a technical nature, there will be sections of this
book that may not be fully understood by everyone.

Coco 111 Secrets Revealed
Copyrxght 1986 Creative Northwest Programming
Written by John Gabbard
Licensed to Spectrum Projects
All Rights Reserved

Reproduction or use, without express written permission from
Creative Northwest Programming, of any portion of this book 1is
prohibited. While reasonable efforts have been taken in the
preparation of this book to assure its accuracy, Creative Northwest
Programming assumes no 1liability resulting from any errors or
ommissions in this book, or from the use of the information
contained herein.

TABLE OF CONTENTS

INTRODUCTION. ... ocaue™ cssasssacaa cmsscssmssasssaveanans « PAGE
CHAPTER 1
LET'S GET STARTED. . cvccneccacccaana csssassssscanss -« ee.PAGE
CHAPTER 2
NEW COMMANDS.......... cveseccsmeans esemasanescanansnens=ePABE
CHAPTER 3
PLAYING WITH PALETTES. .. ccevecacenn esecmeanasaans «eneaeasaPABGE
CHAPTER 4
SMOOTH SCROLLING, PEEKS, POKES AND OTHER TIDBITS........PAGE
CHAPTER S
COCO III MEMORY MAP.......... csaasna “esssecmcaansas cesenas PAGE
CHAPTER 6

COCOo III SUMMARY...... sesssnssannnnss sesasensa eesaraa « =« «PAGE

i3

20

26

34

INTRODUCTION

The Color Computer has been around for quite a while in one form
or another. The first version was known as the "“C" board. Most
people have never heard about this version; there were only a few
hundred produced and it was quickly upgraded to what everybody
thinks of as the first Color Computer, the "D" board.

This computer came with either 4 or 16K of memory, with Standard
or Extended basic. It wasn’'t long before 16K of memory just wasn’'t
enough, so someone fiqured out a way to install up to 32K of memory.
Radio Shack followed suit and came out with the "E" board which was
able to use 32K of memory without performing major surgery on the
computer. As games became more complex, more memory was required so
somebody discovered a way to increase the Coco’s memory to &4K.
Radio Shack again followed suit and produced the "F" board. In the
yvyears that followed the computer technology grew tremendously and a
cost reduced version of the Color Computer appeared as the Color
Computer II and Color Computer IIA.

During all of these changes, not once was anything done about
improving the graphics capabilities. Oh sure, aritfacting was
discovered, tricky use of the interrupts was used to manipulate the
screens in new ways, however these were not actual changes in the
computer, but instead the work of some extremely clever and creative
programmers.

It is again time for an upgrade, a few companies have already
come out with memory upgrades to 128K, 256K and even 512K. In the
spirit of keeping a tradition going, Radio Shack has again followed
suit, but this time they have gone a step or two further by
addressing some of the other limitations of the Color Computer:

1. Only allowed the use of a standard television.

2. Only allowed 32 characters by 16 lines for text display.
3. True lower case was not available.

4. Graphics resolution was limited to 256 by 192.

5. Only 4 colors were available in the high resolution

modes.

6. 64K was no longer enough memory.

7. No smooth scrolling abilities.

8. Double speed did not work on all computers.

9. Only one fire button per joystick.
10. Limited interrupt capability.

The Color Computer III is Radio Shack’s solution to these
limitations. Listed below are some of the Coco 1IlI's new and
advanced features:

1. Three display interfaces are included, Standard TV,
Composite monitor (monochrome or color) and Analog RGB.

2. Three character text modes are available, 32x16, 40x24
and 80x24. -

True lower case is available in the 40 and 80 column
modes however, basic still does not seem to be able to
understand lower case commands.

Graphics resolution has increased to a maximum of
640%223.

Up to 16 colors can be displayed at a time and can be
chosen from a palette of 64 different colors.

Memory starts at 128K and can be increased to S12K.
Smooth scrolling is available in both the horizontal
and vertical directions.

Double speed is now available on all machines.

There are now two fire buttons per Jjoystick.

The IR and FIRR interrupts are each divided into six
seperate sources. Programmable timer, horizontal border,
vertical border, serial data, keyboard data and
cartridge interrupts.

11. Along with all of these new features, the Coco III will

still run about 9207 of the current Color Computer
software.

Almost anytime vyou add new features to something, you also
create new problems to go along with them. This is true in this
case also, 1listed below are a few of these. Most of the problems
are minor ones but deserve to be mentioned.

1.

Since artifacting is primarily a product of your video
display, it is something that the computer cannot really
correct. In the higher graphics modes, some detail in
resolution is lost i1if you are using a TV or a composite
monitor. If you are using an analog RGB monitor, the
new graphics modes work very well however, the old modes
which rely on artifacting to produce colors won’'t work
since RGB monitors don't artifact.

In order to fit 40 and 80 column text on the screen, the
screen area has been widened. This is great so far as
the readability of the text is concerned, because the

4Q column characters are exactly the same size as the 32
column characters, and the BO column characters are

a little bit larger than the old software driven 51
character screens. A praoblem occurs because when the
screen was widened, it was also shifted slightly to the
left. This has the annoying effect on some TV and
Composite displays of shifting the first few characters
off of the left side of the screen totaly out of view.
THIS DDES NOT APPEAR TO EFFECT THE RGB MONITORS.

Smooth scrolling in the horizontal direction requires
48K of memory to allow proper wrap around. Neither the
horizontal or vertical scrolling are supported by basic
commands, Peek and Foke must be used.

Basic has not been re-written, the new commands have
been patched into the old code. This point is both

good and bad. On the good side, most of the existing
software will work without modification, also since
Basic 1s now always in RAM, it is very easy to add

patches and modifications of your own. O0On the bad side,
any short commings that Basic originally had will still
exist. For example, only 32K can be used for basic
programs, the PCOPY bug still exists and PCLEAR 0O still
is not allowed.

6. Because of the new interrupts, some multi-pak interfaces
will require a small modification.

New Basic commands have been added to the existing commands by
Microware Systems Corp. These new commands allow access to some of
the Coco II1I's new features. Following is a brief list:

HSCREEN PALETTE HCLS HPOINT
HLINE HCOLOR HPAINT HDRAW

HSTAT HBUFF HSET HRESET
HCIRCLE HGET HPUT HPRINT
BUTTON LOCATE ATTR WIDTH

LFEEK LPOKE ONERR ONBRK

ERLN ERNQ

These commands will be listed in a later chapter along with a
brief explaination of what each one does. No attempt will be made
and it is not the intention of this book to show vyou how to use
these commands, most of them are high resolution counterparts of
already existing commands with syntaxes that are the same or
similar. The bulk of this book will concentrate on the new hardware
features of the Color Computer I1I1. Short Basic programs which use
some of the new commands will be used to help further vyour
understanding of these features.

CHAPTER 1
LET'S GET STARTED

In order to get started, there are a few things we need to know
about the way the Color Computer 111 does things. The Coco 111, as
we said earlier, is capable of using 512K of memory but the CPU, a
4BROPE, is an 8 bit microprocessor and can only directly address 64K
of memory at a time. Because of this a special method known as
MEMORY MANAGEMENT must be used. Memory management is a scheme which
maps a block of memory into the CPU’'s 64K workspace when 1t is
needed. In some systems this process is automatic, but in the Coco
III this is not the case.

In the Color Computer III, the CPU's 64K bank or workspace is a

seperate entity than that of the memory. This 64K workspace 1is
divided 1into eight BK slots by the Memory Management Unit (MMU) and
each slot is controlled by an MMU register. The actual memory used

in these slots is determined by the values stored in the MMU
registers. Basic initializes these registers to the highest part of
the S12K memory space (even if you only have a 128K system). This
is actually +the address range of $70000 to $/FFFF but the CPU will
see it as 20000 to #FFFF.

The MMU registers are located in memory at $FFAQO-$FFAF, please
note that there are 16 registers but only 8 of them are needed to
define the CPU’'s 64K workspace. This is because there are actually
two sets of MMU registers that you can toggle between with the use
of what is called the TASK REGISTER (TR). This method allows you to
map the CPU’'s 64K workspace two different ways and quickly toggle
between the two set ups by using the task register.

Each MMU register controls a specific 8K slot of the CPU’'s
workspace as follows:

TR MMU REGISTER 8K BLOCK
0 $FFAO $0000-$1FFF
0 $FFA1 $2000-$3FFF
) $FFAZ $4000-$5FFF
0 $FFA3 $6000-$7FFF
0 $FFA4 $B000-$9FFF
0 $FFAS $A000-$BFFF
0 $FFAL $CO00-$DFFF
0 $FFA7 $EO000-$FFFF
1 $FFAB $0000-$1FFF
1 $FFA9 $2000—$3FFF
1 $FFAA $4000-$5FFF
1 $FFAB $6000-$7FFF
1 $FFAC $8000~$9FFF
1 $FFAD $A000-$BFFF
1 $FFAE $C000-$DFFF
1

$FFAF $EQQO-$FFFF

The Color Computer III's memory is also divided into BK blocks.
There are a total of 64 BK blocks of memory (0-%3F) and each one is
referenced by a number. The first 8K block is block 0, the second
is block 1 and so on. If you only have a 128K system then blocks
0-%F, #10-1F and #%20-2F will be mirrors of blocks $30-%3F, in other
words if you only have 128K and you try to place block 0, block #10
or block %20 into the CFPU’'s memory space, block #$30 will appear to
be there instead. So in a 512K system you have memory blocks O-%3F
available for mapping into the CPU’'s workspace, but in a 128K system
you only have blocks $30-%3F available.

Moving a block of memory into the CPU’s workspace is done by
simply placing the number of the block that you want into the CPU
wor kspace slot of your choice. It is possible to put the same block
of memory into more than one CFU memory slot. It is important to
note that placing a new block of memory into one of the CPU's
workspace slots, does not effect the information of the block that
was 1n that slot previously. For example, if the CPU workspace slot
controlled by the MMU register at $FFAOQO currently contains a #$38,
and we replace it with block #3292, the information stored in block
$¥38 does not get hurt or destroyed in any way, it is simply moved
out of the CPU’s workspace and can be brought back at any time by
storing a #38 into one of the CPU's memory slots (it could be the
one at $FFADO, but it doesn’t have to be). In a later chapter we
will manipulate the MMU registers to allow a 32K graphics screen to
be saved from basic.

PALETTE REGISTERS are another item that need a little
explanation. On the old Color Computer, colors were generated on
the graphics screen by placing the proper bit pattern on the screen
for the color vyou wanted. The Color Computer 111 does this in
nearly the same way, a bit pattern is still placed on the screen,
but instead of this pattern defining the color, it points to a
palette register. The value that is stored in the palette register

is what actually defines the color. There are 16 palette registers
available but the number of active ones is determined by the
graphics color mode selected. In the 16 color modes all 16

registers are active, in the 4 color modes only 4 registers are
active and in the 2 color modes just 2 registers are active.
Regardless of the color mode, the active palette registers may be
set to display any of the 64 different colors simply by storing the
code for that color into the proper register. It is possible to
store the same color into any or all of the active palette
registers. Following i1s a list of the 64 available colors and their
codes. Flease note that the codes do not necessarily generate the
same colors on a composite monitor as they do on an RGB monitor.

BINARY HEX DEC PATTERN

00000000
00000001
00000010
00000011
00000100
00000101
00000110
00000111
00001000
00001001
00001010
00001011
00001100
00001101
00001110
00001111
00010000
00010001
00010010
00010011
00010100
00010101
00010110
00010111
00011000
00011001
00011010
00011011
00011100
00011101
00011110
00011111
00100000
00100001
00100010
00100011
00100100
00100101
00100110
00100111
00101000
00101001
00101010
00101011
00101100
00101101
00101110
00101111
00110000
00110001

00
01
02
03
04
05
06
07
o8
09
OA
OR
ocC
0D
OE
OF
10
11
12
13
14
15
16
17
18
19
1A
1R
1C
1D
1E
1F
20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31

YN UNDPUN—O

34
35
36
37
38
39
40
41
42
A3
44
45
44
47
48
49

BO...ooaane
«eeB0c.nne
BOGOacaacaca-
BO..RO......
--G0RO......
BOGORO......
ces---Bl....
BO....Bl....
.-60..B1....
BOGO..B1....
ee..ROB1....
BO..ROR1....
..G0ROB1....
BOGOROB1....

BO......G1..
--60....61..
BOGO....Gl..
--=.RO..06G1..
BO..RO..G1..
--6G0ORO. .G1..
BOGORO. .G1..
-e«...B1G1..
BO....B1G1..
-..60..R1G1..
BOGO. .B1G1..
----ROEB1G1..
BO..ROB1G1..
- .GOROR1G1..
BOGOROB16G1..
P A8 |
BO........R1
-.-60.....-R1
BOGO......R1
ee=.RO....R1
BO..RO....R1
--B60RO....R1
BOGORO....R1

wee---Bl..R1

BO....Bl1..R1
.-60..E1..R1
BOGO..Bl1..R1
---.ROB1..R1
BO. .ROB1..R1
- -GOROE1..R1
BOGOROB1. .R1
ceas.=..-61R1
BO......6G1R1

‘DARK

RGB COLDR

BLACK

BLUE
GREEN
CYAN
RED
MAGENTA

DARK
DARK
DARK
DARK
BROWN
DARK GREY
MEDIUM BLUE
ERIGHT BLUE

LGT BLUE/CYAN
LIGHT BLUE
INDIGO

MED BLUE/PURPLE
MED SKY RLUE
MEDIUM PEACOCK
MEDIUM GREEN
MED GREEN/CYAN
BRIGHT GREEN
BRIGHT GRN/CYAN
MED YELLOW/GRN
LIGHT GRN/CYAN
BRGT YELL OW/GRN
LIGHT GREEN
MEDIUM CYAN
PEACOCK

LIGHT GRN/CYAN
BRIGHT CYAN
LIGHT PEACOCK
PALE PEACOCK
PALE GRN/CYAN
LIGHT CYAN
MEDIUM RED

MED RED/MAGENTA
YELLOW/0ORANGE
LIGHT RED
BRIGHT RED

LGT RED/MAGENTA
ORANGE

FALE RED/MAGENTA
MED BLUE/MAGENTA
BLUE/PURPLE
LIGHT MAGENTA
PURPLE

LIGHT PURPLE
BRIGHT MAGENTA
PALE BLUE/MAGEN
PALE PURPLE
MEDIUM YELLOW
LIGHT YELLOW

'MEDIUM

COMPOSITE COLOR

BLACK
DARK
DARK
DARK
DARK
DARK
BROWN
DARK GREEN/BLUE
DARK SKY BLUE
MEDIUM PEACOCK
MEDIUM GREEN/CYAN
DARK RED/MAGENTA
DARK RED/ORANGE
DARK ORANGE

MED YELLOW/GREEN
MEDIUM BLUE/PURPLE
DARK GREY

MEDIUM BLUE

MEDIUM GREEN
MEDIUM CYAN

MEDIUM RED

MED BLUE/MAGENTA
YELLOW/BROWN
GREEN/BLUE
SKY BLUE
PEACOCK
GREEN/CYAN
RED/MAGENTA
RED/ORANGE
ORANGE

BLUE
GREEN
CYAN
RED
MAGENTA

MEDIUM
BRIGHT
BRIGHT
MEDIUM
MEDIUN
MEDIUM
BRIGHT YELLOW/GRN
BRIGHT PURPLE
LIGHT GREY

BRIGHT BLUE

BRIGHT GREEN
BRIGHT CYAN

BRIGHT RED

BRIGHT MAGENTA
MEDIUM YELLOW
BRIGHT GREEN/BLUE
BRIGHT SKY BRLUE
LIGHT PEACOCK
LIGHT GREEN/CYAN
BRIGHT RED/MAGENTA
BRIGHT ORANGE

BRGT YELLOW/ORANGE
LIGHT YELLOW/GREEN
LIGHT PURPLE

WHITE

LIGHT BLUE

BINARY HEX

00110010
00110011
00110100
00110101
00110110
00110111
00111000
00111001
00111010
00111011
00111100
00111101
00111110
o0111111

Short

32
33
34
35
36
37
38
39
A
3R

-
o

3D
3JE
3F

DEC PATTERN

50
o1
52
23
24
95
96
o7
o8
o9
&0
61
62
63

Basic

«.560....61R1
B0OGO....6G1R1
«ee.RO..G1R1
BO. .RO..G1R1
- .GORO..G1R1
BOGORO. .G1R1
ceee-.B1G1R1
BO....RB1G1R1
«.60..B1G1R1
BROGO..B1G1R1
. e«.ROB1G1R1
BO..ROB1G1R1
« « GOROB1G1IR1
BOGOROB1G1R1

some powerful ways.

RGR C

LGT Y
PALE
LGT VY
MEDIU
BRIGH
PALE
LIGHT
PALE
PALE
PALE
FALE
PALE
VERY
WHITE

OLOR

ELLOW/GRN
YELLOW/GRN
ELLOW/0RANG
M YELLOW
T YELLOW
YELLOW

GREY

BLUE

CYAN
BLUE/CYAN
RED

MAGENTA
PALE YELLOW

COMPOSITE COLOR

LIGHT
LIGHT
LIGHT
LIGHT
LIGHT

GREEN

CYAN

RED
BLUE/MAGENTA
YELLOW

LIGHT GREEN/BLUE
LIGHT SKY BLUE
PALE PEACOCK

PALE GREEN/CYAN
LIGHT RED/MAGENTA
LIGHT ORANGE

LIGHT YELLOW/ORANG
PALE YELLOW/GREEN
PALE PURPLE

programs will be presented in later chapters which
will demonstrate how the palette registers can be

put to work in

CHAPTER 2
NEW COMMANDS

To help make use of the Color Computer I11°'s enhanced features,
a set of new commands has been added. Basically the commands deal
in 3 areas, grahpics, character display and miscellaneous
enhancements. Each new command, along with a brief description of
the function it performs, will be discussed in this chapter. The
commands will be broken into the three groups 1listed above and
presented in that order.

GRAFPHICS:

PALETTE R,C - Flaces the color code indicated by "C" into the
palette register indicated by "R". The command PALETTE 15,63 would
place the color code for white into palette register 15. Instead of
"R" and "C", the words CMF or RGB may be wused to set up system
defaults for composite (CMP) or RGB monitors.

HSCREEN M -~ Activates and displays the graphics mode selected by
"M". 0 = text mode, 1 = the 320x192 4 color mode, 2 = the 3I20x192
16 color mode, & = the 640x192 2 color mode, 4 = the 640x192 4 color
mode. ’

HCLS R — Clears the graphics screen to the palette specified by "R".
The actual color of the screen will be determined by the color code
stored in that palette register.

HCOLOR F,B — Sets the Foreground and Background defaults to the
palettes specified by "F" and "B". The palettes specified will be
used as defaults during certain graphics commands such as 1line and
circle if no palettes are specified.

HSET (X,Y,R) - Sets the point at horizontal coordinate X, vertical
coordinate Y to the palette specified by "R". I+ "R 1s omitted,
the foreground palette specified by the HCOLDR command will be used.

HRESET (X,Y,R) — Sets the point at horizontal coordinate X, vertical
coordinate Y to the palette specified by "R". I+ "R" i1s omitted,
the background palette specified by the HCOLOR command will be used.

HPOINT (X,Y) - Returns the palette value located at the horizontal
coordinate X and vertical coordinate Y. HFOINT is considered a
function because it returns a result to Basic rather than performing
an action. The proper syntax for this command is A=HPOINT(X,Y)
where Y“A" 1is the variable that will contain the result and "X" and
"Y" are the horizontal and vertical coordinates.

HLINE — Draws a line from X1,Yl1 to X2,YZ2. The syntax for this
command is the same as the LINE command of Extended Basic.

HDRAW - Allows you to draw a shape by giving an imaginary graphics
cursor direction and color instructions. The syntax for this

command is the same as the DRAW command of Extended Basic.

HCIRCLE ~ Allows a circle to be drawn on the screen. The syntax for
this command is the same as the CIRCLE command of Extended Basic.

HPAINT -~ Allows an area on the screen to be filled with a palette.
The syntax for this command is the same as the FAINT command of
Extended Basic.

HPRINT (X,Y),"STRING" — Allows text messages to be displayed on the
graphics screen. X and Y are the horizontal and vertical
coordinates at which to start. YSTRING" 1is the message to be
printed, up to 40 characters (80 for HSCREEN 4) may be displayed on
a line. The character color and the color of it’s background is
determined by the foreground and background colors set with the
HCOLOR command.

HBUFF N,A — Reserves a memory buffer for HGET and HPUT where "A" is
the number of bytes to reserve and "N" is the buffer number. This

method is wused 1instead of dimensioning an array to reserve space
(Buffer is limited to BK).

HGET - Gets an area of screen memory and places it 1in the buffer
specified. The syntax for this command is the same as the GET
command of Extended Basic.

HPUT - Takes the screen memory that was saved by HGET and puts it
onto the screen at the coordinates specified. The syntax for this
command is the same as the PUT command of Extended Basic.

TEXT COMMANDS:

WIDTH W — Changes the character width of the display to the value
specified by "W". Legal values are 32, 40 and B8O.

LOCATE X,Y — This command is used instead of the PRINT@ statement of
Basic for the 40 and 80 column screens. The cursor will be
positioned at the horizontal and vertical coordinates specified by
IIXII and IIYII-

HSTAT A%,A,X,Y — Returns the X/Y position, the attributes and the
character located at the current cursor position.

ATTR F,C,B,U — Sets the attributes of the character located at the
current cursor position. Foreground color, Rackground color, Blink
and Underline options may be specified.

MISCELLANEOUS COMMANDS

BUTTON - Returns the status of the specified joystick button. The
command A=BUTTON(QO) will return the status of button 0. 0O=Right
button 1, 1=Right button 2, 2=Left button 1, 3=Left button 2.

ONERR - Allows the user to trap system errors. The command ONERR

GOTO 100 would transfer program control to line 100 anytime a system
error occurs.

ERNDO - Contains the number of the system error that just occured.
ERLN - Contains the line number where the last system error occured.
ONBRK - Allows the user to trap the break key. ONEBRK GOTO 1000
would transfer control to line 1000 when the BREAK key is pressed.
LPEEK — Allows peek access into the entire 512K memory range.

| POKE — Allows poke access into the entire 512K memory range.

Modifying old programs to work with the new graphics and text
features if the Color Computer III is NOT a very difficult job. In
the case of most graphics commands, it is just a matter of adding an
"H" in front of the old command. PAINT becomes HFAINT, DRAW becomes
HDRAW, CIRCLE becomes HCIRCLE and so on. In some cases other
changes must also be made, for example PRINT@ will not work on the
40 or 80 column screens, LOCATE must be used instead, another
example would be when using HGET and HPUT, instead of dimensioning
an array to hold the graphics information, HBUFF must now be used to
reserve this space.

The following program, CC2TOCC3.BAS, will aid in converting your
old programs. It won’'t do everything, but it will handle the
majority of the work and will flag out most of the problem areag.
CC2TOCC3.BAS works with DISK ONLY, it reads in a normally saved
basic file and writes out a converted ASCII file. Notice that
the command | PEEK was 1ncluded ¢twice in the area for the new
secondary functions, this is not a mistake. Due to a bug in basic,
the new secondary functions skip token 168 and start with 169, the
first | PEEK is simply a dummy to take this error into account.

10 CLS:CLEAR1500:DIM TK$(120) ,SF$(45) : TK=120:5F=435
40 PA=0 ‘set to 1 if print@ to be left alone
S0 FORX=0TOTK:READTK® (X) : NEXTX: FORX=0TOSF : READSF % (X) : NEXTX
70 LINEINPUT"ENTER FILENAME>";FL$
B0 IF FL#$=""THEN END
20 IF LEN(FL$)<=4 AND LEFT#(FL$,3)="DIR" THEN

A=VAL (RIGHT#$(FL$,1)):DIR A:GOTO70
100 CLS:PRINT:PRINT"SCREEN, PRINTER OR DISK(S/P/D)?"
110 A$=INKEY#$:IF A$=""THEN110
120 IF NOT(A$="S" OR A$="P" OR A%="D") THEN110
130 IF AF="P" THEN DN=-2 ELSE IF A%$="S" THEN DN=0 ELSE DN=2
140 FX$=LEFT$(FL$+" " ,8)EXT$="BAS"
150 IF A%$="D" THEN LINEINPUT"OUTPUT FILENAME>";FO$:IF FO$=""

THEN FO$="0OUTFILE"
160 GOSUB900: IF FL=0 THEN PRINT:PRINTFLS$"."EXT$;

" NOT FOUND...":PRINT:GOTO70

170 OPEN"D" ,#1,FL$+",BAS",1
180 FIELD#1,1A5BYS$
190 OPEN"O",#DN,FO$+".BAS"

10

200 EN=LOF (1)1

210 'set flag (FL) to zero if basic program is tokenized,
set to one if ascii

220 GET#1,1:A%$=BY#$: IF ASC{(A%)=255 THEN FL=0 ELSE FL=1

230 ON FL GOTO 400

240 X=4:AD=1

250 IF AD=1 THEN GOSUR410:IF EX THEN 380

260 GET#1,X: A=ASC(BY#$) : A+=CHR$ (A)

270 1IF A$=CHR#%(0) THEN A#%=CHR#(13):A=13:AD=1

280 IF A$=":" THEN GOSUBGSO

2920 IF A=255 THEN GOSUEBBO:GOTO3I70

300 IF A=128+7 THEN GOSUB1020

Z10 IF A=128+5%9 THEN GOSUB920

320 IF A=128+68 THEN GOSUB1040

330 IF A=128+61 THEN GOSUB106Q

340 IF A=128+62 THEN GOSUB1060

Z50 IF A>=128 THEN A=A-128:PRINT#DN,TK$(A) ; :GOTO370

360 PRINTHDN,A%;

370 X=X+1:1IF INKEY$<{>"Q" THEN GOTO2Z50

380 CLOSE

320 FRINT:GOTO70

400 PRINT"FILE NOT TOKENIZED":GOTO3B0

410 IF X=EN THEN EX=1:60T0430 ELSE EX=0Q

420 X=X+2:GET#1,X: A$=BY$: A=AGC (A%) : X=X+1: GET#1 ,X: A$=BY%:
B=AGC (A$) : A=A*¥256+B: AF=MIDF (5TR$ (A) ,2,LEN(STR$ (A)))
:PRINTH#DN,A$; " ";: X=X+1:AD=0 '

430 RETURN

435 ‘Start of Basic’'s commands

440 DATA FOR,GO,REM,REM,ELSE,IF,DATA,PRINT,ON, INPUT

450 DATA END,NEXT,DIM,READ,RUN,RESTORE,RETURN,STOP

480 DATA FOKE,CONTINUE,LIST,CLEAR,NEW,CLOAD,CSAVE

S00 DATA OPEN,CLOSE,LLIST,SET,RESET,CLS,MOTOR,SOUND

520 DATA AUDIO,EXEC,SKIPF,TAB(,TO,SURBR, THEN,NOT

540 DATA STEP,OFF ,+,—,%,/,”,AND,OR, >,=,<

560 ‘'Start of Extended Basic’'s commands

570 DATA DEL,EDIT,TRON,TROFF ,DEF,LET,LINE,HCLS,SET

5920 DATA RESET,#®#HSCREEN, #¥PCLEAR ,HCOLOR ,HCIRCLE ,HPAINT ,GET

610 DATA HPUT ,HDRAW,**PCOPY ,%»¥PMODE ,PLAY,DLOAD,RENUM,FN

630 DATA USING

640 ‘Start of Disk Basic’s commands

650 DATA DIR,DRIVE,FIELD,FILES,KILL,LOAD,LSET,MERGE

670 DATA RENAME ,RSET,SAVE,WRITE,VERIFY,UNLOAD,DSKINI

620 DATA BACKUP,COPY,DSKI$,DSK0$,D0S

695 ‘CoCo 111°'s commands start here

696 DATA WIDTH,PALETTE ,HSCREEN,LPOKE ,HCLS,HCOLOR

697 DATA HPAINT HCIRCLE ,HLINE,HGET ,HPUT ,HBUFF ,HPRINT

698 DATA ERR,BRK,LOCATE ,HSTAT ,,HSET ,HRESET ,HDRAW

699 DATA CMP ,RGR,ATTR

710 'Start of Basic’'s secondary functions

720 DATA SGN, INT,ARS,USR,RND,SIN,PEEK,LEN,STR$%,VAL ,ASC

740 DATA CHR#$,EOF ,JOYSTK,LEFT$,RIGHT%,MID%,POINT

760 DATA INKEY$,MEM

770 'Start of Extend Rasic’'s secondary functions

780 DATA ATN,COS,TAN,EXP,FIX,LO0G,P0S,SQR,HEX$,VARPTR

11

800
20
830
835
836
840
850
860
870
880
890
200
210
20
30
940
950
960
?70
?80
P20
1000
1010
1020
1030
1040
1050
1060
1070

DATA INSTR,TIMER,HPOINT,STR

INGS$

‘Start of Disk Basic’'s secondary functions

DATA CVN,FREE,LDC,LOF jMKN$,
‘CoCo 111°'s secondary funct

AS
ions

DATA LPEEK,LPEEK,BUTTON,HPOINT,ERNO,ERLIN

‘End of tokens
GET#1 ,X+1: T=AS5C(BY#) : T$=CHR

IF T=%HB3 OR T=&HB84 THEN X=X+1:A$=T%$:A=T

RETURN
X=X+1:6ET#1,X: A=ASC (BY#%) : A%
A=A—-128: PRINTSF$(A); : RETURN

FL=0:FORS=3 TO 17:DS5KI%$0,17,5,A% B¢

FORM=1TOLEN(A$) STEPX2

IF MID$(A$,M,11)=FX$+EXT$ THEN FL=1

NEXTHM
FORM=1TOLEN(B$)STEP32

IF MID#(B$,M,11)=FX$+EXT$ THEN FL=1

NEXTHM

IF FlL=1 THEN S§=17
NEXTS: RETURN
GET#1,X+1:T=ASC(BY#$)

IF T<>128+9 THEN PRINTH#DN,
RETURN

(T

=EﬁR$(A)

IIHII;

IF PA=0 THEN GET#1,X+1:IF BY$="@"THEN PRINTH#DN, "*»";

RETURN

GET#1 ,X+1:IF BY$<{>"#" THEN PRINTH#DN,"H";

RETURN

GET#1 ,X+1: IF BY$="("THEN PRINT#DN, "H";

RETURN

12

ELSE PRINTHDN,"P";

Bob Devries
Note
This line should read:
890 A=A-128:PRINT#DN$,SF$(A);:RETURN

CHAPTER 3
PLAYING WITH PALETTES

One of the nicest new features of the Color Computer III is the
ability to display your choice of 64 different colors, 16 at a time
on a high resolution screen.

On the Color Computer and Color Computer 11, each pixel (picture
element) was defined by two bits (1/4 of a byte). If we use two
bits to count in binary, the most different combinations we can
attain is 4 (00, 01, 10, 11). These bit pairs were hard wired to a
specific color and the only time that a color could change was if
they all changed by switching color modes.

In the Coco 111 4 color mode, the description would be the same

except that the colors are not hard wired anymore. Instead of the
bit pairs defining a color, they point to a byte in the 1/0 space
called a palette register. Each palette register may be programed
individually with one of 44 different color codes. In the 2 color

mode, two palette registers are used, in the 4 color mode, 4 of the
palette registers are used and in the 16 color mode, all 16 of the
palette registers are used. (The 2 color mode uses one bit per
pixel, the four color mode uses 2 bits per pixel and the 16 color
mode uses 4 bits per pixel).

The palette registers are located in memory from $FFBO to $FFBF
and may be set by either POKEing new values or by using Basic’s
PALETTE command. The only way to read what is stored in a palette
register is to use the PEEK command and AND the result with 63.
PEEK ($FFB1) AND 63 would read the value stored in palette register
1.

Any palette register may contain any color at anytime. If
desired, all palette registers may be set to the same thing,
Changing a palette register to a new color will cause all pixels
pointing to that palette to instantly change to that color. The
following Basic program called CIRCLES will draw 4 circles on the
screen in different palettes and set them all to the same color. It
will then wait for the keys "i", "2", "3" or "4" to be pressed, each
key will turn on a different circle when pressed and turn it off
when released. Notice in line 110 that the last statement is CMP.
This is the same as the command PALETTE CMP, Also take a peek at
lines 2 and 3 for some useful POKES.

1 ONBRK GOTO110

2 'Set computer to double speed, disable HCLS during HSCREEN

3 POKE&HFFD9,0: POKE&HEGLCS, 18: POKEXHEGLC7 , 18

10 HSCREEN 2:HCLS58:DIM 0P (4)

15 ‘Draw the circles

20 FOR X=1 TO 4:HCIRCLE(X#40+60,192/2) ,15,X:
HPAINT (X#40+60,192/2) X, X:NEXTX

295 'Get current values for palette registers 1-4

30 FOR X=1 TO 4:0P (X)=PEEK(&HFFBO+X)AND 63:NEXTX

35 ‘Set palettes 1-4 to black

A0 FOR X= 1 TO 4:PALETTE X,0:NEXTX

41 'Set colors for Hprint and print message

42 HCOLOR 11,0:HPRINT (11,1),"PRESS 1, 2, 3 OR 4"

13

45 'Wait for keys and respond accordingly

S50 AS=INKEY$

51 ‘Cause the keys to repeat and do counter for message blink
52 FORPJ=0TO7:POKE&H152+PJ ,255:NEXTPJ:LL=L1L+1: IF LL<4 THENG&O
5% 'Blink characters by changing the palette value

54 LLL=0:MB=1-MB: IF MB THEN PALETTE11,0 ELSE PALETTE 11,63

B ‘Act on keyboard response

60 IF A$="1" THEN PALETTE 1,0P(1) ELSE PALETTE 1,0

70 IF A%="2" THEN PALETTE 2,0FP(2) ELSE PALETTE 2,0

80 IF A%="3" THEN PALETTE 3I,0FP(3) ELSE PALETTE 3,0

20 IF A%$="4" THEN PALETTE 4,0FP(4) ELSE PALETTE 4,0

100 IF A${>"Q@" THEN S50

108 'Go back to single speed and restore palette defaults
110 POKE&HFFD8,0:CMP

The next example is a 1little more elaborate and involves a

fairly 1long program. It will build a large ball onto the graphics
screen and make it appear to rotate by simply changing the palette
registers through a series of colors. To save space, and typing

time, the DATA statements from lines 310 to 720 only contain the top
left corner of the ball, the program will take this data and mirror
it into a complete ball. The DATA statements from lines 240 to 290
contain the ball pattern information and may be changed to create
different patterns on the ball. Notice that the last value of each
line is an "F", this determines the palette used for the background
area of the ball and should not change. Each of these values is the
number of the palette register to use for that area of the ball.

1 POKE¥HFFD?,0 ‘Double speed

S WIDTH32 '

10 PCLEAR1:CLS:PRINT" DEMO BALL GENERATOR *

20 CLEAR10Q00:DIM RW$(46,23) ,A$(42) ,CL(11,11)

21 ONBRK G0OTO 1030

30 FORX=1TO&6:FORY=1TO25:READ RW$(X,Y) :NEXTY,X

40 READ A%$:1IF A$<>"END1" THEN PRINT "BALL DEFINITION ERROR'":END

S0 M=1:FORX=1TO42Z:READ A% (X)

60 AF="":FORJM=LEN(A$(X))TO 1 STEP-1:A$=A%+MID$ (A$(X) ,IM,1)
tNEXTJIM: GOSUB730: A+ (X)) =A% (X)) +R$+"YY"

70 PRINT@32%#4 ,"READING ROW"X:NEXTX

79 HSCREENZ2:HCLS 135

80 BW=8B:BD=84:SA=%H&60000: HO=128/2-(bW/2) :V0=192/2~-(BD/2)

20 FORL=1T042:60SUBR180:NEXTL

100 FORL=42TO1S5TEP-1:GUGRUB180:NEXTL:G0T0230

170 ***** subroutine """ °°°

180 SC=INT((11-1)/14)+1:M=M+1

1920 B#="":FORX=1TOLEN(A$ (L))
s C$=B$+RW$ (SC,ASC(MIDF (A (L) ,X,1))-ASC("A")+1)
tNEXTX:FORX=1TOLEN (B$) STEP2
:LPOKE SA+(VO#140)+HO+INT(X/2) ,VAL ("&H"+MID$(B$,X,2))
:NEXTX:VD=V0+1

200 RETURN

210 '’ end of subroutine °°°

230 GOTO 1000

14

240
250
260
270
280
290
300
z10
I20
IZ0
340
350
360
370
380
20
400
410
4220
470
440
450
450
470
480
490
500
510

20
530
540
550
560
570
580
590
&00
610
620
30
640
650
660
&70
&80
690
700
710
720
730

740
999

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
BE=""

Do O
QOO0
~DNHd»=D

~
'’

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYEEFGHIL
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYCDDEEFFGHIJK
YYYYYYYYYYYYYYYYYYYYYYYYYYYBRCCDDEEFFGHHIJL
YYYYYYYYYYYYYYYYYYYYYYYYYBEBBCCDDEEFFGGHIJKL
YYYYYYYYYYYYYYYYYYYYYYYARBCCCDDEEFFGGHHIJKL
YYYYYYYYYYYYYYYYYYYYYAABBCCCDDEEFFGGHHI IJEL
YYYYYYYYYYYYYYYYYYYAARBBCCCDDEEFFGGHHI IJKEL
YYYYYYYYYYYYYYYYYYAABBBCCCDDEEFFGGGHHI IJKEL
YYYYYYYYYYYYYYYYAANARBBCCCDDEEFFFGGHHI IJJKLL
YYYYYYYYYYYYYYYAAARBRCCCDDEEFFFGGHHI I IJKKLL
YYYYYYYYYYYYYYAAABRBCCCDDEEEFFGGGHHI IJJKKLL
YYYYYYYYYYYYYAAABBBCCCDDDEEFFGGGHHHI TJJIKKLL
YYYYYYYYYYYYAAABBRCCCDDDEEFFFGGGHHI T IJJIKKLL
YYYYYYYYYYYAAABBBBCCCDDEEEFFGGGHHHI IJJJIKKLL
YYYYYYYYYYAAARBBRCCCDDEEEFFGGGGHHIT IJJJIKKLL
YYYYYYYYYAAAABBRCCCDDDEEEFFGGGHHHI I TJJIKKKLL
YYYYYYYYAAARABREBCCCDDDEEEFFFGGGHHIIIIJJKKKLL
YYYYYYYYAAAMRBEBRCCCDDDEEEFFGGGHHHI I IJJJIKKLLL
YYYYYYYAAAARBRCCCDDDEEEFFFGGGHHHIIIJJJIKKLLL
YYYYYYYAAABBBBCCCDDDEEEFFFGGGHHHIIIJJJKKLLL
YYYYYYAAQAARBRBRCCCDDDEEEFFFGGGHHHITIIJJJIKKKLLL
YYYYYAAAABBBCCCCDDDEEEFFFGGGHHHI I IJJJKKKLLL
YYYYYAAABRBBCCCDDDEEEFFFGEGHHHHI I TIJJJKKKLLL
YYYYAAAAEBRBCCCCDDDEEEFFFGGGHHHHI I IJJJKKKLLL
YYYYAAAABRBCCCDDDEEEEFFGGGGHHHI I T IJJJKKKLLL
YYYAAAABRBCCCCDDDEEEFFFGGGGHHHIIIIJJJKKKLLL
YYYAAARAEBBEBCCCDNDEEEEFFFG6G6GHHHHI I IJJJKKKKLLL
YYYAAARBBRCCCCDDDEEEEFFGGG6HHHHI I IJJJKKKKLLL
YYAAAABEBBCCCNDDDEEEFFFG66GGHHHITII IJJJIKKKEKLLL
YYAAARBRRRCCCDDDEEEEFFFGGGGHHHII I TJJIKKKKLLL
YYAARABBRRCCCCDDDEEEEFFFGGGHHHHII I IJJJKKKKLLL
YAAAABBBRCCCDDDDEEEFFFFGGGHHHHITIIJJIKKKKLLL
YAAAABEBCCCDDDEEEEFFFGGGGHHHHII IJJJIKKKKLLEL
YAAABRBRCCCCDDDEEEEFFFGGGGHHHHI I IJJJIKKKKLLL
YAAABBBCCCCDDDEEEEFFFGGGGHHHHI T IJJJKKKKKLLL
AAAARBRCCCDDDDEEEEFFFGGGGHHHII I TJJJIKKKKLLLL
AAAAEBBECCCDDDDEEEFFFFGGGHHHHI T IJJJJKKKKLLLL
AAAABBBCCCDDDDEEEFFFFGGGGHHHI T IJJJJKKKKLLLL
AAAEBBREBCCCDDDEEEEFFFFGG6GHHHI I IJJJJKKKKLLLL
AAABBBCCCCDDDEEEEFFFFGGGGHHHI I IJJIJJKKKKLLLL
AAABBBCCCCDDDEEEEFFFFGGGGHHHI I IJJJJIKKKKLLLL
AAABBECCCCDDDEEEEFFFFGGGGHHHI I IJJJJKKKKLLLL
:FORC=1TOLEN (A%) : A=ASC(MID$ (A%$,C,1)) -1

: IF A=ASC("Y")—-1THEN A=A+1:60T7T0740 ELSE A=88-(A-64)
B$=B$+CHR#*$ (A) : NEXTC: RETURN

NOW THAT THE BALL IS BUILD, MAKE IT SPIN
1000 FOR P=0 TO 11:FOR C=0 TO 11:READ CL (P,C):NEXT C,P

15

1010 FOR P=0 TO 11:FOR €C=0 TO 11:POKE&HFFBO+C,CL (P,C)
1020 NEXT C,P:IF INKEY$<>CHR$(13) THEN 1010
1030 FOKEXHFFD8,0:CMF: END

1050 DATA 9,9,9,26,26,26,16,16,16,63,563,63
1060 DATA 63,9,9,9,26,26,26,16,16,16,63,63
1070 DATA 63,63,9,9,9,26,26,26,16,16,16,63
1080 DATA 63,63,63,9,9,9,26,26,26,16,16,16
1090 DATA 16,63,63,63,9,9,9,26,26,26,16,16
2000 DATA 16,16,63,63,63,9,9,9,26,26,2b,16
2010 DATA 16,16,16,63,63,63,9,9,9,26,26,26
2020 DATA 26,16,16,16,63,63,63,9,9,9,26,26
2030 DATA 26,26,16,16,16,63,63,63,9,9,9,26
2040 DATA 26,26,26,16,16,16,63,63,63,9,9,9
2050 DATA 9,26,26,26,16,16,16,63,63,63,9,9
2060 DATA 9,9,26,26,26,16,16,16,63,63,63,9

All color displayed on the screen is controlled by the palette
registers, this is true even for the text modes. In the Color
Computer compatible mode’'s 32X16 screen format, the background
screen color is controlled by palette 13 and the color of the text
is controlled by palette 12. This i1s the only Coco III text screen
where these registers are forced. In the 40 or 80 column screens the
ATTR command may be used to point the text and individual character
backgrounds to different palettes. In fact the 40 and B0 column
screens are set up entirely different, instead of one byte per text
character, the 40 and 80 column screens use two. All even numbered
bytes contain the value of the character to display, and the odd
bytes contain the attributes for that character. The attribute bit
definitions are defined in chapter S.

The 40 and 80 column screens are located in memory at address
$6CO00 and 1is only moved into the CPU's 64K workspace when a
character needs to be printed. This nice because it means that the
high resolution text screens do not use any of Basic’'s program
space. The following routine will LPOKE all of the available
characters onto the text screen.

WIDTH 40:LOCATEO,10

AT=16

30 FOR X=0 TO 510 STEP 2

40 LPOKE &H&6CO0QO0+X,INT (X/2):LPOKE &HG6CO00+X+1,AT
S50 NEXTX

[
v O D

The second portion of line 40 pokes in the attribute byte for
the character preceding it, you can easily play around with this by
changing the value of AT which is set in line 20.

It should be noted that the blink rate of a character that has
the blink attribute bit set is controlled by the programmable timer
interrupt ($FF24 and $FF939). I+ both of these bytes are zero’'d, the
characters will not blink.

The following program called "CC3WORD" will give you an example
of how the 40 and 80 column text mode commands may be used to create
some very powerful programs with almost no effort. "CCIWORD" is a
simple single screen word processor, it allows you fill the screen

16

with text, save it and print it (Press BREAK to get access to the
EXIT, SAVE, LOAD and PRINT options.). There are no fancy insert or
delete functians, but there is full screen cursor control and type
over.

There are a few interesting things to note about this program.
The first is the use of ONBRK at wvarious 1lines to change the
function of the break key. Second, is the error trap routine near
the end of the program. Third, the Save/Load routine was designed tao
work with disk and can be made to work with cassette, by changing
the SAVEM in 1line 5920 to a CSAVEM and the LOADM in line 600 to
CLOADM. Finally, notice the color of the cursor (HINT: It is not
the normal underline).

10 CLEARSQ00 ,%HSFFF

15 DIM A(7)

20 DS=1 ‘1= use double speed

30 IF DS THEN FOKE&HFFD?,0

40 SS=Y%xH&6C0O00 "START OF SCREEN

45 GOSURBOO

SO0 ONERR GOTO630:0NBRK GOTOX00

60 WD=40:IF NOT (WD=40 OR WD=80) THEN WD=40

70 WIDTH WD

80 DIM WN#$ (WD) ,WN(WD) : X=0:Y=0

?0 LOCATE X,Y

100 A$=INKEY$: IF A$=""THEN100

110 IF A%$=CHR*(3) THEN 300

120 IF A$=CHR$(8) THEN GOSUR200:G0T0100

130 IF A%$=CHR$(?) THEN GOSUB220:G0T0100

140 IF A3x=CHR#(94) THEN GOSUBR240:G0T0100

150 IF A$=CHR#(10) THEN GOSUB260:60T0100

160 IF A$=CHR#$(12) THEN GOSUB 280:G0T0100

170 IF A%=CHR#(13) THEN X=0:6G05UB2460:G0T0100

180 LPOKEE SS+ (Y* (WD*2))+X%2 ,ASC (A%$) : GOSUB220

190 GOTO100O

200 X=X—1:IF X<O THEN X=WD-1

210 LOCATE X,Y:RETURN

220 X=X+1:1F X>WD-1 THEN X=0:G0T0240

230 LOCATE X,Y:RETURN

240 Y=Y-1:1IF Y<O THEN Y=23

250 LOCATE X,Y:RETURN

260 Y=Y+1:1F Y>»=24 THEN Y=0

270 LOCATE X,Y:RETURN

2B0 CLS: X=0:Y¥=0:L0CATEX,Y:RETURN

290 ’'Break was pressed, print options and wait for response

300 CA=PEEK (%H11A) : POKE&H11A,2535: GOSUB390: GOSUB4460: ONERK
GOTO300: IF A$="C"THEN POKE%H11A,CA:G0OT0O070 ELSE IF A%$=CHR$(3)
THEN 4350

310 IF A%="1I" THEN 4B0 ELSE IF A${>"P" THEN300

315 POKEXH11A,CA

320 1IF DS THEN POKEXHFFD8,0Q

330 FORMY=0TO23X: FORMX=0TOWD-1

340 LOCATEMX ,MY:HSTAT A%,A,XP,YP:PRINT#-2,A%;

350 NEXTMX:PRINTH#-2,CHR$ (13) ; : NEXTHY

17

395
360
370
380
390
400

410

420
430
440
450
460

470
480

490
500
210

330
240
950
360
370
580
290

600
610

620
630
640
650

660
670
680
6920
700
800
810
700

these include true lower case, border color

PRINT#-2,CHR$ (12) ;
IF DS THEN POKE&HFFD9,0
ONBRK GOTO300:GOTO3I00

‘Print options and wait for key

ONBRK 60OTO0400

TY=0: FORTX=0TOWD-1:LOCATETX,TY
tHSTAT WNF,WN{TX) ,MO,M1:WN$(TX)=WN$:NEXTTX

LOCATEQ,0:ATTRO,4 ,B:PRINTSTRINGS® (WD—-1,"

:LOCATE (WD-39)/2,0

Il);

:PRINTY"BREAK=EXIT P=PRINT I=1/0 C=CONTINUE";

ONBRK GOTO0430

A$=INKEY$: IF A$=""THEN430 ELSE RETURN

‘Restore text under message window and end
GOSUR460: LOCATEQ,22: GOSUBB810: POKEXHFFD8, 0z END

LOCATEQ,0: ATTRO,0: FORTX=0TO (WD+*2) -1STEP2
:LPOKE S5+TX,ASC (WN& (INT(TX/2))):LFOKE SS+TX+1,0

tNEXT: LOCATEO,0: RETURN
‘Save or Load text

ONBRK GOT0610:FX=LPEEK (S5+ (WD#2)) : GOSUR7QQ
:LOCATE (WD-17)/2,0:FPRINT"SAVE OR LOAD TEXT";

A$=INKEY$

IF NOT (A$="S" OR As$="L") THENA490
GOSUR700: LOCATE 4,0:PRINT"FILENAME TO "3:IF A%="S"
PRINT "SAVE>";:ELSE PRINT"LOAD>";

LINEINPUT FL$:LOCATEOG,O0:LPOKE SS+(WD*2) ,FX

s LPOKE S5+ (WD#2)+1 ,0:FL3$=LEFT$(FL$%+"
GOSUR460: IF FL$=STRING#(8," ") THENS8O0

IF DS THEN POKEXHFFD8,0
IF A$="5" THEN GOSUB390
IF A$="L" THEN GOSUB&0O
IF DS THEN POKE&HFFD9,0
FOKEXH11A,CA: GOTO300

",8)

THEN

POKERXHFFA3 ,&H36: SV=WD#2%24: SAVEM FL%,%H6000 , ZxH6000+5V , XxH6000

:RETURN

POKE&HFFA3,%H36: LOADM FL$: RETURN
LOCATEO,0: LPOKE 5SS+ (WD*2) ,FX:LPOKE SS+ (WD%*2)+1,0: GOSUR460

:GOTO300

‘Process errors here
ER=ERNO: LN=ERL. IN: OFEN"O" ,0,""
IF DS THEN POKE&HFFD%,0

IF ER=26 THEN EM#$="FILE NOT FOUND, PRESS ANY KEY"
tEL=LEN(EM#$) ELSE EM#$="ERROR ENCOUNTERED, PRESS ANY KEY"

: EL=LEN (EM#$)

GOSUB700: LOCATE (WD-EL.) /2,0: PRINTEM®$;

M$E=INKEY$: IF M$=""THENL70
60SUB460: GOTO300
‘Print white message window

LOCATEOQ,0:ATTRO,4: PRINTSTRING® (WD—1 ,"

") 5 : RETURN

FORX=1TO7:READA(X) : POKEA(X) 4 4: NEXTX: RETURN

FORX=1TO7:POKEA (X) ,&HA40: NEXTX: RETURN
DATA &HF797 ,&HF7A3 , &HF7EC , 3HFBOF ,&HFB84F , &HF91B, %¥HFB89C

Some new enhancments are also available for the 32X16 screen,

change

and

an

invert

screen color mode. Basic was not re-written to allow these features
to work, but since it now always resides in RAM, a simple FOKE may
be used to correct this problem.

POKE &H?53C?,%H7F

This will prevent the console out vector from reseting the
values at $FF22. To enable true lower case, FOKE &HFF22,&H10, To
enable the inverted screen mode, POKE &HFF22,%H20 and to enable the
border color invert, POKE &HFF22,%H40. To get a combination of
these features, add the values of the features desired together and
POKE address $FF22 with the result.

19

CHAPTER 4
SMOOTH SCROLLING, PEEKS AND POKES, AND OTHER TIDBITS

The most interesting new feature of the Color Computer III is
its ability to smooth scroll in both the vertical and horizontal
directions. Scrolling 1s not supported by Basic except through the
use of the POKE command.

Vertical scrolling is controlled by three registers of the GIME
chip, #FF?9D, $FF?D AND $FF9E. These registers work together to
display addresses within the 512K system, in register $FF?C only
bits 5-7 are used. Each time these registers are incremented, the
display moves by B bytes, in order to scroll an entire row, the
registers need to be incremented by a value which i1s equal to the
NUMBER OF BYTES PER HORIZONTAL ROW divided by 8. The following
example will start at Basic’'s graphics page ($60000) and scroll the
screen according to the position of the joystick. The particular
screen being viewed has 160 bytes per horizontal row.

10 ONBRK GOTO 190

20 HSCREEN 2:HCLS

Z0 HCIRCLE (140,96) ,40,4

40 HPAINT (160,96),5,4

S50 ST=49152

60 JO=JOYSTK(0):J1=JOYSTK(1): J1=J1-32

70 IF INKEY$="Q"THENST=49152:G0SUB150: END

80 S=SGN(J1):J1=ABS(J1)

90 IF J1<15 THEN S=0

100 IF J1>23 THEN S=S#2

120 IF J1>30 THEN S=S#3

130 ST=ST-(S*(160/8)):G0SUB 150

140 GOTD&LO

150 A=INT(ST/65536) : AO=A%32

160 A1=INT(ST/256) : A2=ST—(A1%*256) : A1=A1 AND 255
170 POKE&HFF9C,A0: POKEXHFF9D,A1: POKEXHFFIE ,A2
180 RETURN

190 ST=49152:G0OSUB150

Line 130 i1s where the registers get incremented, "S" will equal
-1, 0 or 1 depending upon the position of the joystick. This will
be multiplied by the number of bytes per horizontal row (160)
divided by 8. This value 1is then converted by the subroutine
starting at 1line 150, into the 3 bytes necessary for storage into
registers $FF9C, $FF9D and $FF9E. To make the scroll faster, add
the DOUBLE SPEED poke to line 10 (POKE&HFFD9,0).

The horizontal scroll register 1is located at address $FF9F.
Only 7 bits (0-6) of this register are used to contrel the scroll,
bit 7 is used to activate the HORIZONTAL VIRTUAL ENABLE (HVEN) mode.
Horizontal Virtual Enable uwuses 48K of memory, is not accessable
through Basic except with pokes and is required anytime horizontal
scrolling needs to do a complete wrap around. HVEN works by forcing
the bytes per horizontal row to 256, the graphics mode selected has
no effect on this except to define how much of the 256 horizontal
bytes to display. In other words, if a 3I20X192 (140 bytes across)

20

graphics mode is selected while HVEN is turned on, the screen will
show the normal 160X1922 bytes and an area of ?26X192 bytes will be
hidden off of the edge of the screen. The following diagram will
help clarify this.

o 20 5

—— == —= —= =~ -~ 255 bytes —-—!— —— —— —— —— ——

-— -~ ~— 160 bytes -—— —— ——

1

]

]

!

—-—— 96 bytes —— !
]

1

]

on the screen. view. !
]

]

]

]

]

]

I -

' -1

! !

' This is the area ' This area is
! that is displayed ! bhidden from
)]

! !

) '

! !

! '

The following short program will set up a horizontal virtual
enable screen, clear it with a small machine language routine (Basic
will only clear a 32000 byte screen), LPOKE a colored block on the
screen and allow it to scroll according to the position of the
joystick. ‘

10 CLEAR200 ,%HSFFF-256&

20 ON BRK GOTO180

30 HO=0

40 H5CREEN 2:G05UB 160

50 FOR X=%HSFO0O TO &H3F10:READ A: POKEX,A:NEXTX

60 FORX=3HZIO TO ¥H3IS:POKEYXHFFAZI,X:EXEC &HSFOO:NEXTX
80 AD=416838

90 FORY=0 TO 7:FOR X=0 TO 19

100 LPOKE AD+X,1:NEXTX

110 AD=AD+256:NEXTY

120 JO=JOYSTK (0Q) : JO=J0~32:5=5GN (J0O) : JO=ABS (JO)

130 IF JO<15 THEN S=0

140 HO=(HO-S)AND 255

150 GOSUR 160:G0T0120

160 POKEZHFF9F, (HO OR %HB80)

170 RETURN

180 HO=0:G0SUR160

190 ° The following machine language code is contained
200 ° in the DATA statements that follow:

210 ° PSHS X,D,U,Y SAVE REGISTERS

220 ° LDY #3$2000 CLEAR THIS MANY BYTES (8K)

230 ° LDX #36000 START CLEARING AT THIS ADDRESS
240 °LOOF

250 ° CLR X+ CLEAR BYTE AT X, INCREMENT X
260 ° LEAY -—-1,Y COUNT DOWN HOW MANY TO CLEAR
270 ° BNE LOOP KEEP GOING IF COUNT NOT=0

21

280 ‘ PULS X,D,U,Y,PC RETURN TO BASIC
290 DATA &H34 ,%H76,%H10,%HBE ,&H20, %HOO , *HBE , %H&0 , %HOO
Z00 DATA XH&F ,&HBO, LH31 ,&H3IF ,4H26 , %HF A, XH35, WHF 6

Line S0 pokes in a small machine language routine that will zero
the 8K block of memory locate at $6000 of the CFPU’'s workspace. Line
60 then swaps each 8K block of memory required for the graphics
screen 1into the slot at #6000 and executes the routine to clear it.
Notice that at line 160, the Horizontal Offset (HD) is OR’'d with
$80, this will insure that HVEN will remain set. I+ for some reason
it was desirable to not be in the HVEN mode, HD would need to be
ANDed with #7F to insure that the HVEN bit was forced off.

Along with the blessing of more memory comes the greater
possibility +that part of it may be bad, it’'s simply the law of
averages and somewhere down the line the law will catch someone.
The following routine is a simple 128/512K memory test program,
written partially in Basic with a small machine language routine
that will check the 8K block of memory located at $£6000 of the CPU’'s
workspace. The Basic program will be used to print messages,
sequentially swap 8K blocks of memory into the slot at $46000 and
execute the machine language routine to check the block.

10 CLEAR200,%HSFFF-256

15 WIDTH32

20 PB=PEEK(&HFFA2)AND &H3F

25 DIM BE(&HIF)

27 FOR X=0 TO 48:READ A:FPOKEXHSFOO+X,A:NEXTX

J0 CLS:PRINT@3I2#5,"MEMORY SIZE (128 OR S512) >";:INFUTMS

40 IF NOT (MS=128 OR MS=512) THEN 30

50 IF MS=128 THEN SB=%&H30 ELSE SE=0

60 FOR X=SEB TO %H3IF:IF X=PB THEN 20

70 FOKE¥HFFA3,X:EXEC &HOFO00: IF PEEK (¥HSF02)< >0 THEN BB (X)=1

80 IF (X AND 1) THEN A%="WORKING" ELSE A$=" "

90 PRINT@3I2#7+12,AF:NEXTX

100 F1=0:F2=0

110 FOR X=SR TO %H3F:1IF BB(X)<>0 AND F1=0 THEN F1=1
:PRINT@ZZ2%92,"BYTE(S) BAD IN BLOCK(S):"

111 IF F1=1 THEN PRINTX",";

120 NEXT X:FRINT CHR#$(8):1IF F1=0 THEN

PRINT@3IZ*9," ALL MEMORY CHECKS GOOD"
130 PRINT" MEMORY TEST COMPLETE"
140 END

150 "The following machine code is contained in the DATA
160 ‘statements that follow:
170 ° START

180 ° BRA START1 G0TO PROGRAM START

190 ° ERBYTE

200 ° FCB 0 STORE ERROR CODE HERE

210 ° START1

220 ° PSHS D,X,U,Y SAVE ALL REGISTERS

230 ° LEAU ERBYTE,PCR POINT U TO ERROR STORAGE RYTE
240 ° CLR ,U START WITH NDO ERROR

250 ° LDY #$2000 CHECK THIS MANY BYTES

22

260 ° LDX #$%6000 START CHECKING FROM HERE
270 ° LOOP

280 ° LDA ,X SAVE ORIGINAL BYTE

290 ° LDB #$55

00 ‘° STB ,X STORE A 0101 BIT PATTERN

310 ° LDE ,X GET IT BACK

320 ° CMPB #355 SEE IF THE SAME AS STORED

330 ° BNE BAD BRANCH IF NOT THE SAME

340 ° COME

IS0 ¢ STHE ,X NOW STORE 1010 PATTERN

360 © LDB ,X GET IT BACK

370 ° CMPE #3AA SEE IF THE SAME AS STORED

380 ° BEQ NOTBAD BRANCH IF IT IS THE SAME

390 ‘ BAD

400 ° STB ,U SET ERROR BRYTE

410 ° NOTBAD

420 ° STA ,X+ PUT BACK ORIGINAL, MOVE TO NEXT BYTE
430 ° LEAY —-1,Y DECREMENT COUNTER

430 ° ENE LOOP BRANCH IF NOT REACHED ZERD YET
450 * PULS D,X,U,Y,PC RETURN TO BASIC

460 °

500 DATA HZ0,%HO1 ,2HOO ,%H34 ,%H7& , LHIZ, %HED , *HFF
510 DATA YHF9,%H6F , %HCA ,%H10, %HBE , &H20 , XHOO , *HBE
520 DATA &H&0,XHOO,%HAL ,¥HB4 ,&HCS , &HSS , %*HE7 , %HB4
530 DATA HEG,%HB4 ,%HC1 ,%HSS,%H26 ,&HOP ,&HS3 , XHE7
S40 DATA %HB4 ,%HESL ,%HB4 ,&HC1 ,%HAA ,&H27 ,&HO2 ,XHE7
S50 DATA %HCA4 ,%HA7,%HBO0,&H31,¥H3F ,%H26 , HES , &H3S
S60 DATA UHF&

The new high resolution screens are fantastic, very detailed
pictures, graphs and charts can be drawn and painted with a variety
of different colors. The 320X192 screen uses 32K bytes of memorvy,
fortunately this memory is not taken from the Basic program area.
What this means 1s that your program size doesn’t have to suffer
anymore when using the new high resolution screens, it also means
however, that you can't directly save the screen to tape or disk. A
Rasic program must now be used to save the screen a block at a time.
The number of blocks to save 1is determined by the size of the
screen, remember, each block is 8K, so a 32k screen would use 4
blocks. Basic always puts it ‘s graphic screen starting at block %30,
so to save a 32K screen blocks $30, #31, $32 and $33 would all need
to be saved. The following routine will illustrate how this is
done.

5 WIDTH 40

10 CLEAR200,%HSFFF 'Reserves BK of memory from $6000 to $7FFF
15 ONERR GOTO 200

16 POKE&HEGLCSH, 18: POKEXHESLL7,18 ‘disable clear screen

20 CLS:PRINT"(S)AVE OR (L)OAD A SCREEN?"

30 AF=INKEY#:IF NOT(A%="5" OR A$="L") THEN 30

40 IF A%$="S" THEN AC$="SAVE":A=0 ELSE AC%="LDAD":A=1

SO PRINT"ENTER FILENAME TO "AC$:LINEINPUT FLS$

60 IF FL#%="" THEN END

65 C=INSTR(FL%,"."):IF C=0 THEN C=INSTR(FL%,"/")

67 IF C<>0 THEN FL$=LEFT$(FL$,C-1)

69 HSCREENZ

70 FOR X=%H3I0 TO &H3I3:POKEXHFFA3,X

80 IF A=0 THEN SAVEM FL$+"/"+STR$(X) ,&H6000,&H7FFF , #H6000

20 IF A=1 THEN LOADM FL$+"/"+5TR%$ (X)

100 NEXT X:PRINT AC#$;" SUCCESSFUL™:END

200 OPEN"0",0,"":PRINT:PRINT "ERROR ENCOUNTERED DURING ";AC#$:END

Notice the OPEN statement in line 200, it opens a file to the
screen. This may seem like a strange thing to do, but it 1is
necessary 1in this case because the routine that handles the ONERK
control does not reset the device number to the screen. Most of the
time this will not effect anything, but here the error could occured
while accessing the disk which would cause the message in line 200
to be printed to the disk buffer instead of to the screen. Other
commands that will reset the device number are CLS and POKE&H&F,O.

PEEK and FOKE are a couple of commands that allow direct access
to memory within the CPU’'s 64K workspace. Some very powerful things
can be accomplished if they are used properly, to include modifying
Rasic. Listed below are a few interesting and usefull changes that
can be made.

To prevent HSCREEN command from clearing the screen:
POKEXHE&LCS, 18: POKEXHELC7,18

To change the rate of blink rate of characters with the blink
attribute set:

POKEXHFF24, (MSE OF BLINK RATE)

POKE&HFF95, (LSB OF BLINK RATE)

To change the color values for the CMP command, poke a value from O
to 63 into the memory between $E&L54 — FEL63. ($E654=PALETTE O,
tE6SS=PALETTE 1, ETC.)

To change the color values for the RGB command, poke a value from Q
to 63 into the memory between $E664 -~ $SE&L73. ($EL64=PALETTE O,
$E665=PALETTE 1, ETC.)

To fix a bug and make the CMP and RGEBR commands change all 16 palette
registers:
POKEXHEL49,16

To change the depth of the HSCREEN graphics modes from 192 to 200
and to allow the graphics commands to reach down that far:

POKE&HEOQ&C , %H3X5

POKEXHEQ&LD , #H3IE

POKEXHEOQGLE ,¥xH3Z4

POKEXHEOGLF , *H3D

FOKEXHER75,199

POKE&HE7BA, 200

POKEXHE7BE, 199

POKEXHEF8BF , 18

24

To change the cursor on the Width40 and WidthB0 screens:
POKEXHF797 ,X
POKE&HF7A3, X
FOKEXHF7EC, X
POKE&HFBOF , X
POKEXHF84F , X
FOKEXHF21B,X
POKEXHFB82C, X
(Where X equals the attribute value to use. See character attributes
in chapter 5 for more information.)

To find out the current screen width:
PRINT PEEK(&HE7)
(0=32 Characters, 1=40 Characters, 2=80 characters)

To find out the current HSCREEN mode:
FRINT PEEK (XHE®)
(O=TEXT, 1=HSCREEN 1, 2=HSCREEN 2, 3=HSCREEN 3, 4=HSCREEN 4)

To find the current default foreground color for HSCREEN graphics
modes:

PRINT PEEK (&HFEOA)

To find the current default background color for HSCREEN graphics
modes:

FPRINT PEEK (XHFEOB)

To find the current ON BRK line number:
PRINT PEEK(&HFEQC) *256+PEEK (XHFEOD)

To find the current ON ERR line number:
PRINT PEEK(XHFEOE) #256+PEEK (XHFEOF)

High resolution character set for HPRINT is located between:

KHFO?D — 4HF3E%C
(8 bytes are required to define one character)

25

CHAPTER S5
COCO II1I MEMORY MAP

The Color Computer 111 has two modes, the COCO mode which acts
just like a Color Computer or Color Computer 11, and an ADVANCED
VIDEO FPROCESSOR (AVP) mode which uses memory management, new high
resolution screens and the other new features of the Color Computer
III. In brief, the memory map looks something like this.

Total range: 0000 ~ $7FFFF (512 Kilobytes)
1/0 and Control: XFFQOO — XFFFF (All banks)
ROM: $78000 — F7FEFF (Deselectable)

or
$78000 - F7FDFF (Deselectable)

RAM:
64K Coco mode: X0000 - XFEFF (Except for ROM)
128K Coco mode: X0000 — XFEFF (Except for ROM)
4 additional 16K pages at X4000 - X7FFF
128K AVF mode: $60000 —~ ¥7FEFF (Except ROM, I/0 & CTRL)
Duplicated at... #40000 - $5FFFF
$20000 — $3FFFF
F00000 — $1FFFF
256K Coco mode: (Same as 128K Coco mode)
256K AVP mode: $40000 — $7FEFF (Except ROM, I/0 & CTRL)
Duplicated at... $00000 - $3FFFF
912K Cocao mode: (Same as 128K Coco mode)

912K AVP mode: $£00000 —- $7FEFF (Except ROM, 1/0 & CTRL)

1/0: XFFOO — XFFFF
XFFOO — XFFO3 FIAQ0 (Same as old Coco)
XFF10 - XFF1F RESERVED
XFF20 — XFF23 FIA1 (Same as old Coco)
XFF30 — XFF3F RESERVED
XFF40 ~ XFFSF SCS
XFF&0O — XFF7F UNDECODED (Current peripherals)
XFF20 - XFF9F GIME CHIP CONTROL
XFFAO — XFFAF MMU
XFFBO — XFFBF COLOR PALETTE
XFFCO - XFFDF S5AM CONTROL REGISTERS
XFFEO — XFFFF INTERRUPT VECTORS

It is possible for a device to respond to more than one address,
but only those listed above should be used.

26

Following is a detailed breakout of the 1/0 section.

FFOO ~ FFO3

FFOO

FFO1

FFO2

FFO3

BIT O=
BIT 1=
BIT 2=
BIT 3=
BIT 4=
BIT 5=
BRIT 6=
BIT 7=

BIT O=
BIT 1=

BIT
BIT
BIT
BIT
BIT
BIT

NI DWW
i ni

BIT
BRIT
BIT
BIT
BIT
BIT
BIT
BIT

o

\10‘%{1-&04?\]"0

BIT
BIT

ol
1l

BIT
BIT
BIT
BIT
BIT
BIT

NP UM
[I T

FF23

BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT

\JU‘LH-&"NP}JT‘

W

PIAO

KEYBOARD
KEYBOARD
KEYBOARD
KEYBOARD
KEYBODARD
KEYBOARD
KEYRBOARD
JOYSTICK

(0=TRQ to CPU
(0=TIR0Q occurs
(1=IR0Q occors

Normally

ALWAYS 1
ALWAYS 1
NOT USED

ROW
ROW
ROW
ROW
ROW
ROW
ROW

NOUBUAWUN-

and
and
and
and

right joystick button one
left joystick button one
right joystick button two
left joystick button two

COMPARISON INPUT

disabled; 1=IRQ to CPU enabled)
on falling edge of Horiz sync)
on rising edge of Horiz sync)

1 (0 changes data direction reg to $FFO0Q)
LSR of the two analog MUX select lines

HORIZONTAL SYNC

KEYBOARD
KEYBOARD
KEYBOARD
KEYBOARD
KEYBOARD
KEYBOARD
KEYBOARD
KEYBOARD

(0=IRBQ to CPU
(O=1IRB occurs
(1=IRQ occors

Normally

ALWAYS 1
ALWAYS 1
NOT USED

COLUMN
COLUMN
COLUMN
COLUMN
COLUMN
COLUMN
COLUMN
COLUMN

INTERRUPT FLAG

ONOUHAWHNR

disabled; 1=IRE to CPU enabled)
on falling edge of Field sync)
on rising edge of Field sync)

1 (O changes data direction reg to $FF02)
MSB of the two analog MUX select lines

FIELD SYNC INTERRUPT FLAG

PIA1l

CASETTE DATA INPUT
R5-232 DATA OUTPUT

oo

BIT D/A LSB
BIT D/A
BIT D/A
BIT D/A
BIT D/A
BIT D/A MSB

27

FF21

FF22

FF27

FFD8

FFD9

FFDE
FFDF

<
!

BIT
BIT

[y
Il

BIT
BIT
BIT
BIT
BIT
BIT

\JU“(IJI'I-D"AP\J

BIT
BIT
BIT
BIT
RIT
BIT
BIT
BRIT

NOU B WN=O

BIT
BIT

= O
ot

BIT
BIT
BIT
BIT
BRIT
BIT

o

i

\J&Lﬂﬁwh\l

(O=FIRR to CPU disabled; 1=FIR(G to CPU enabled)
(0=Set flag on falling edge of CD)

(1=Set flag on rising edge of CD)

NORMALLY 1; O Changes Data direction reg to #FF20
CASETTE MOTOR CONTROL: 0=0FF 1=0N

ALWAYS 1

ALWAYS 1

NOT USED

CDh Interrupt flag

R5-232 DATA INPUT
SINGLE BIT SOUND OUTPUT

NOT USED

VDG CTRL OUTPUT €SS

vDG CTRL OUTPUT GMO & UPPER/LOWER CASE NOT
VDG CTRL OUTPUT GM1 % INVERT

VDG CTRL OUTFUT GM2

VDG CTRL OUTPUT A NOT/G

(0=FIRQ to CPU disabled; 1=FIRR to CPU enabled)
(0=Set flag on falling edge of CART)

(1=Set flag on rising edge of CART)

NORMALLY 1; O €Changes Data direction reg to $FF20
SIX EBIT SOUND ENARLE

ALWAYS 1

ALWAYS 1

NOT USED

CARTRIDGE Interrupt flag

USED FOR POWER UP SYSTEM CONFIGURATION, BIT DEFS
ARE NOT AVAILABLE AT THIS TIME

TURN OFF DOUBLE SPEED

SET TO

SET TO
SET TO

DOUBLE SPEED

ROM MODE
ALL RAM MODE

GIME CHIP CONTROL REGISTERS: FF90 - FF9F

FF90

BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT

ORNUPADGN

1=Color Computer compatible mode
1=MMU enabled

1=Chip IRR output enabled

1=Chip FIRR output enabled
1=DRAM at XFEXX is constant
1=Standard SCS

ROM map control (see table below)
ROM map control (see table below)

BRIT O ROM MAPPING

X 16K INTERNAL, 16K EXTERNAL
O 32K INTERNAL
1 32K EXTERNAL (Except vectors)

28

FF91

FF22

FF93

FF94
FF9S

BIT
BIT
RIT
RIT
RIT
BIT
BIT
BIT

BIT
BIT
BIT
BIT
RIT
BIT
BIT
BIT

BIT
BIT
RIT
RIT
RIT
BRIT
BRIT
BIT

O NN

O NWRUMDEN

O_HMH#U\U*\I

0=Two banks of DRAM

0=464K chips, 1=256K chips

Timer input select: 0=70us, 1=63us
NOT USED

NOT USED

NOT USED

NOT USED

MMU Task Register Select (TR)

NOT USED

NOT USED

Interrupt from Timer enabled
Horizontal border IRR enabled
Vertical border IRQR enabled
Serial data IRR enabled
Keyboard IRfQ enabled
Cartridge IRR enabled

NOT USED

NOT USED

Interrupt from Timer enabled
Horizontal border FIRR enabled
Vertical border FIRR® enabled
Serial data FIR@ enabled
Keyboard FIRE enabled
Cartridge FIRE enabled

— TIMER MOST SIGNIFICANT BYTE
— TIMER LEAST SIGNIFICANT BYTE

The above timer is a 146 bit interval timer, the count automatically
begins when a value is stored in the MSE. The input clock is either

14 MHz

or

horizontal sync as selected by BIT 35 of $FF?1. As the

count falls through zero, an interrupt is generated (if enabled),
and the count is automatically reloaded.

FF?6 — Reserved for future use
FF?7 — Reserved for future use

BRIT 7 O=alphanumeric, 1=bit plane graphics

BRIT & 1=individual attributes enabled in alpha

RBRIT 5 l1=color set flip for old articfacting screens
FF98 BIT 4 1=Monochrome signal output (on composite)

BIT 3 1=50 Hz wvertical sync

BIT 2 lines per row (see table below)

BIT 1 lines per row (see table below)

BIT O lines per row (see table below)

29

BIT2

BIT1

BITO

lines per character

row

FF99

FF9A

FF9B

FF9C

BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT

BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT

BIT
BIT
BIT
BIT
BIT
RIT
BIT
BIT

BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT

<

-

O NWdPUDGN

S NWRU N SR NWMUDIN

CHRNAMMULDEN

SN el Neol Nell T Ne]

NOT USED
lines per
lines per

Horizontal resolution
Horizontal resolution
Horizontal resolution

Color resol
Color resol

ield
ield

ution
ution

one

two

three

eight

nine

ten

twelve
(reserved)

(see table below)
(see table below)

(HRES2)
(HRES1)
(HRESO)

(CRES1)
(CRESQO)

Lines per field

NOT
NOT
MSB
MSB
MSHE
LLSB
LSB
LSB

USED
USED
of
of
of
of
of
of

192
200
210
223

RED border color
GREEN border color
BILUE border color
RED border color
GREEN border color
BLUE border color

Make characters blink
Underline characters

Foreground
Foreground
Foreground
Background
Rackground
Background

NOT USED
Vertical
Vertical
Vertical
Vertical
Vertical
Vertical
Vertical

of
of
of
sC
sC
sC
sc

color
color
color
color
color
color

fset
fset
fset
roll
roll
roll
roll

bit
bit
bit
bit
bit
bit

(palette
(palette
(palette
(palette
(palette
(palette

address Y18
address Y17
address Y16

bit
bit
bit
bit

30

(alpha
(alpha
(alpha
(alpha

(see video
resolution

page)

(see video
resolution page)

address)
address)
address)
address)
address)
address)

mode)
mode)
mode)
made)

BIT 7 — Vertical offset address Y15
BIT 6 — Vertical offset address Y14
BIT 5 - Vertical offset address Y13
FF9D BIT 4 - Vertical offset address Y12
BIT 3 - Vertical offset address Yil
BIT 2 — Vertical offset address Y10
BIT 1 — Vertical offset address Y2
BIT O — Vertical offset address Y8
BIT 7 - Vertical offset address Y7
BIT 6 - Vertical offset address Y6
BIT 5 —- Vertical offset address YS
FFE RIT 4 - Vertical offset address Y4
BIT 3 - Vertical offset address Y3
BIT 2 — Vertical offset address Y2
BIT 1 - Vertical offset address Y1
BIT © — Vertical offset address YO
BIT 7 - Horizontal virtual enable (HVEN)
BIT 6 — Horizontal offset address
BIT S - Horizontal offset address
FF9F BIT 4 - Horizontal offset address
BIT 3 - Horizontal offset address
EBIT 2 — Horizontal offset address
BIT 1 — Horizontal offset address
BIT O - Horizontal offset address

NOTE: HVEN enables a horizontal screen width of 256 bytes
regardless of the resolution or color mode bits selected. This will
allow a "virtual" screen somewhat larger than the displayed screen.
The user can move the "window" (the displayed screen) by means of
the horizontal offset address bits. In character mode, the screen
width 1is 128 characters regardless of attribute (or 64, if double
wide is selected).

31

VIDEO RESOLUTION

The combination of HRES and CRES bits determine the resolution
of the screen. Listed below are the resolutions which are
supported. Any combinations not listed below may not be supported
in future versions.

ALFPHANUMERICS: (Rit 7 of FF98=0, Bit 7 of FF20=0)

HRES2 HRES1 HRESO CRES1 CRESO MODE
(8] - (o) - - 32 character
0 - | e -— 40 character
1 - (o) - —_ 64 character
| - | -~ - 80 character

NOTE: If character by character attributes are desired in the 64 or
80 character modes, two banks of DRAM are required (Bit 7 of
FF91=0).

GRAFPHICS: (Rit 7 of FF98=1, Rit B8 of FF20=0)

BANKS BYTES
HRESZ HRES1 HRESO CRES1 CRESO RERD PIXELS COLORS ACROSS

1 1 1 0 1 2 640 4 160
1 0 1 0 0 1 640 2 80
1 1 0 0 1 2 512 4 128
1 0 0 0 0 1 o512 2 64
1 1 1 1 o) 2 320 16 160
1 0O 1 0 1 1 320 4 80
o) 1 1 0O 0 1 320 2 40
1 1 Q 1 Q 2 256 16 12

1 0 0 0 1 1 256 4 64
0O 1 0 0 0 1 256 2 32
1 0 1 1 0 1 160 16 80
0 1 1 0 1 1 160 4 40
0 0O 1 0 o 1 160 2 20
1 O 0 1 0 1 12 16 64
0 1 0 0 1 1 128 4 32
0 0 0 0] 0 1 12 2 16

In addition to the above modes, the previous Coco modes are
available. These result when Bit 7 of FF?90 is set, the HRES and

CRES bits have no effect on these modes. The number of required
banks of ram 1listed above is a minimum requirement. FPlease note
that in the 2 color modes there are 8 pixels per byte, in the 4

color moég;j there are 4 pixels per byte and in the 16 color modes
there are pixels per byte.

32

Bob Devries
Note
This should read 2 pixels not 8 pixels

CHARACTER ATTRIBUTE MODES

Page attribute mode:

In this mode,

the attributes are selected by the bits of

(BRit 6 of FF98=0)

$FF9B,

and are enabled by the Most Significant Rit of the character code.

Character bit definitions

BIT 7 = Attribute enable
BIT 6 = Character bit 6
BIT 5 = Character bit 5
BIT 4 = Character bit 4
BIT 3 = Character bit 3
BIT 2 = Character bit 2
BIT 1 = Character bit 1
BIT O = Character bit 0O

Individual attribute mode:

(Bit 6 of FF98=1)

Background color bit

(palette address)

In this mode, each character on the screen has it’'s own
attribute byte, this allows for greater flexibility but requires
twice as many bytes per screen.

Character bit definitions (Even byte)

RIT 7 = NOT USED

BIT 6 = Character bit 6

BIT 5 = Character bit 5

RIT 4 = Character bit 4

BIT 3 = Character bit 3

BIT 2 = Character bit 2

RIT 1 = Character bit 1

BIT 0 = Character bit 0O

Attribute bit definitions (Odd byte)

BIT 7 = Blink this character

BIT 6 = Underline this character

BIT 5 = Character color bit (palette address)

BIT 4 = Character color bit (palette address)

BIT 3 = Character color bit (palette address)

BIT 2 = Background color bit (palette address)
1
0

Background color bit

Individual character attributes
FF?0=1 (Coco compatible mode).

(palette address)

are not available 1f Bit 7 of

CHAPTER 6
COCO 111 SUMMARY

The Color computer III has turned out to be a fine machine, 1t
contains many features that until now have only been available in

the more expensive machines. 512K of memory, 640 by 200 high
resolution graphics mode, 16 colors at a time on some screens, a
choice of 64 different colors.... and the list goes on. I will

admit that the Coco II1 is not the most powerful home computer
available, but it is the best buy on the market today. VYou will not
be able to find a computer anywhere that has all of the features of
the color computer 111 and sells for $219 dollars.

Can you imagine COCO MAX running on a 512K machine, using the

320 by 192, 16 color graphics screen! How about a 512K graphics
adventure! What about spreadsheets, word processors and other
business programs! Level II 059 for the Coco IIl 1s amazing, 1t

features a windowing enviroment that will make MAC owners envy you!
The possibilities for this machine are endless.

There are a couple of hidden tricks within the Basic ROM that I
would like to mention at this point. First, type WIDTH 40, then
type CLS 100. Thank you T. Harris and T. Earls, they are the ones
who wrote the new Basic commands. (If you type CLS 100 again, you

will find that the names are gone). Now for one more thing to try.
Turn off the computer, press and hold down the ALT and CTRL keys
while turning 1t back on. Pictured from left to right are M.

Hawkins, T. Harris and T. Earls. (Nice photo guys!)

Don't worry, code space was not wasted, not only was there
enough space left over in the ROM for that picture, but probably a
couple more as well. Hmm, I wonder if...

34

~» |
> R

,__Z//a 3
& >4

o —> b
Aaupio 1

HsuUnC 1 » 3
_VSyMe 13 9

> |0

RGR CommecTor DINOUT

“ o g 13 oF TC (6382).

TR Y
o — o
-—'itcpu'gfi 3 = ? \SE © O | “5_Compos 1TE VIDEO
—& H 24 /Trs_____.(
._IL.’_‘L' 22 T
z T
—f] DL(C'?’,E'%"
A c 0 IC (9 3 % 41K
R/ >—1 R/D ANCED COLOR .
&7 Re=r ADV 50—
— W Tecicid(VCRLHSEE) sAF— y
—Z ran>? _
——‘ﬁ‘ig VoD 2
_.__ELI 3 W1 ECLK
—AL R 47
~ 9 N QCLK
&1 pppol RS 7 R g

R -

DIAERAM oOF THE GIME CHIP

	COCO III Secrets Revealed
	Table Of Contents
	Introduction
	Chapter 1 - Let's Get Started
	Chapter 2 - New Commands
	Graphics Commands
	Text Commands
	Miscellaneous Commands

	Chapter 3 - Playing With Pallettes
	Chapter 4 - Smooth Scrolling, Peeks and Pokes, and other Tidbits
	Chapter 5 - CoCo III Memory Map
	Memory Map
	Video Resolution
	Character Attribute Modes

	Chapter 6 - CoCo III Summary
	RGB Connector Pinout
	Diagram of the GIME Chip

